skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shahriar Talebi, Amirhossein Taghvaei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Duality of control and estimation allows mapping recent advances in data-guided control to the estimation setup. This paper formalizes and utilizes such a mapping to consider learning the optimal (steady-state) Kalman gain when process and measurement noise statistics are unknown. Specifically, building on the duality between synthesizing optimal control and estimation gains, the filter design problem is formalized as direct policy learning. In this direction, the duality is used to extend existing theoretical guarantees of direct policy updates for Linear Quadratic Regulator (LQR) to establish global convergence of the Gradient Descent (GD) algorithm for the estimation problem–while addressing subtle differences between the two synthesis problems. Subsequently, a Stochastic Gradient Descent (SGD) approach is adopted to learn the optimal Kalman gain without the knowledge of noise covariances. The results are illustrated via several numerical examples. 
    more » « less